日益复杂的机器学习模型的不断增长的计算需求通常需要使用强大的基于云的基础架构进行培训。已知二元神经网络由于其极端的计算和内存节省了更高精确的替代方案,因此有望进行现场推断。但是,他们现有的训练方法需要同时存储所有层的高精度激活,这通常使在内存受限的设备上学习不可行。在本文中,我们证明了二进制神经网络训练所需的向后传播操作对量化非常强大,从而使现代模型的现场学习成为实用命题。我们介绍了一种低成本的二元神经网络训练策略,该策略表现出相当大的记忆范围减少,同时几乎没有准确的损失与Courbariaux&Bengio的标准方法。这些减少主要是通过仅以二进制格式保留激活来实现的。在后一种算法上,我们的置换替换量看到记忆需求减少3--5 $ \ times $,同时在可比时间内达到相似的测试准确性,这些型号跨越了一系列经过培训的小型模型,用于对流行数据集进行分类。我们还展示了对二进制RESNET-18的从划痕成像网训练,并实现了3.78 $ \ times $减少内存。我们的工作是开源的,包括覆盆子Pi靶向原型,我们用来验证建模的内存降低并捕获相关的能量滴。这样的节省将避免不必要的云下载,减少延迟,提高能源效率和保护最终用户的隐私。
translated by 谷歌翻译
Search and Rescue (SAR) missions in remote environments often employ autonomous multi-robot systems that learn, plan, and execute a combination of local single-robot control actions, group primitives, and global mission-oriented coordination and collaboration. Often, SAR coordination strategies are manually designed by human experts who can remotely control the multi-robot system and enable semi-autonomous operations. However, in remote environments where connectivity is limited and human intervention is often not possible, decentralized collaboration strategies are needed for fully-autonomous operations. Nevertheless, decentralized coordination may be ineffective in adversarial environments due to sensor noise, actuation faults, or manipulation of inter-agent communication data. In this paper, we propose an algorithmic approach based on adversarial multi-agent reinforcement learning (MARL) that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications. In our setup, the objective of the multi-robot team is to discover targets strategically in an obstacle-strewn geographical area by minimizing the average time needed to find the targets. It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time. Based on the centralized training with decentralized execution (CTDE) paradigm in MARL, we utilize a hierarchical meta-learning framework to learn dynamic team-coordination modalities and discover emergent team behavior under complex cooperative-competitive scenarios. The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments with different specifications of benign and adversarial agents, target locations, and agent rewards.
translated by 谷歌翻译
Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
translated by 谷歌翻译
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization, and certification of the quantized representation is necessary to guarantee robustness. In this work, we present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs. Inspired by advances in robust learning of non-quantized networks, our training algorithm computes the gradient of an abstract representation of the actual network. Unlike existing approaches, our method can handle the discrete semantics of QNNs. Based on QA-IBP, we also develop a complete verification procedure for verifying the adversarial robustness of QNNs, which is guaranteed to terminate and produce a correct answer. Compared to existing approaches, the key advantage of our verification procedure is that it runs entirely on GPU or other accelerator devices. We demonstrate experimentally that our approach significantly outperforms existing methods and establish the new state-of-the-art for training and certifying the robustness of QNNs.
translated by 谷歌翻译
While the NLP community is generally aware of resource disparities among languages, we lack research that quantifies the extent and types of such disparity. Prior surveys estimating the availability of resources based on the number of datasets can be misleading as dataset quality varies: many datasets are automatically induced or translated from English data. To provide a more comprehensive picture of language resources, we examine the characteristics of 156 publicly available NLP datasets. We manually annotate how they are created, including input text and label sources and tools used to build them, and what they study, tasks they address and motivations for their creation. After quantifying the qualitative NLP resource gap across languages, we discuss how to improve data collection in low-resource languages. We survey language-proficient NLP researchers and crowd workers per language, finding that their estimated availability correlates with dataset availability. Through crowdsourcing experiments, we identify strategies for collecting high-quality multilingual data on the Mechanical Turk platform. We conclude by making macro and micro-level suggestions to the NLP community and individual researchers for future multilingual data development.
translated by 谷歌翻译
This paper surveys some recent developments in measures of association related to a new coefficient of correlation introduced by the author. A straightforward extension of this coefficient to standard Borel spaces (which includes all Polish spaces), overlooked in the literature so far, is proposed at the end of the survey.
translated by 谷歌翻译
Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on $3$ stochastic non-linear reinforcement learning tasks.
translated by 谷歌翻译
大多数腿部机器人都是由串行安装链路和执行器的腿部结构构建的,并通过复杂的控制器和传感器反馈来控制。相比之下,动物发展了多段腿,关节之间的机械耦合以及多段的脚。它们在所有地形上运行敏捷,可以说是通过更简单的运动控制。在这里,我们专注于开发抗原在自然地形上也滑落和下沉的脚步机制。我们提出了安装在具有多接头机械肌腱耦合的鸟类灵感机器人腿上的多段脚的首先结果。我们的单段和两段机械自适应的脚显示在开始滑动之前,在多个软和硬质基材上显示了可行的水平力。我们还观察到,与球形和圆柱 - 脚相比,分割的脚减少了软底物上的下沉。我们报告了多段脚如何提供非常适合双皮亚机器人的可行压力点的范围范围,还适用于斜坡和自然地形上的四倍机器人。我们的结果还提供了对诸如级别鸟类等动物的分段脚的功能理解。
translated by 谷歌翻译
我们考虑了从相对较小的I.I.D.估算大因果多树的骨骼的问题。样本。这是由于确定因果结构的问题,当变量数量与样本量非常大,例如基因调节网络中的问题。我们给出了一种算法,该算法在此类设置中以高精度恢复了树。该算法在基本上没有分布或建模假设下起作用,而不是一些轻度的非分类条件。
translated by 谷歌翻译